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Abstract 

Noninvasive electrocardiographic imaging (ECGI) 
reconstructs epicardial electrical activity from body 
surface potentials (BSP). In previous work, we 
demonstrated that a regression framework based on 
Multivariate Adaptive Regression Splines (MARS) trained 
within a subject achieved higher fidelity than Tikhonov 
regularization. In this study, we extend this framework to 
assess cross-subject generalization. A leave-one-pig-out 
protocol was applied on in-vivo data from four 
anesthetized pigs with torso and epicardial recordings 
(184 BSP and 239 EGM electrodes). To enable cross-
subject training, BSP and EGM were standardized to 2D 
electrode maps. Results showed that the generalized MARS 
model maintained accuracy close to subject-specific 
training, and in some cases outperformed it when training 
data within the test subject were limited. These findings 
highlight the potential of data-driven ECGI frameworks to 
move beyond subject-specific models and towards 
clinically transferable solutions. 

 
1. Introduction 

Electrocardiographic imaging (ECGI) aims to 
reconstruct epicardial electrical activity from noninvasive 
body surface potentials (BSP). The classical formulation is 
an ill-posed inverse problem, typically solved with 
Tikhonov regularization [1]. Although stabilizing the 
solution, such approaches tend to oversmooth electrograms 
and activation time (AT) maps, are highly sensitive to 
errors in geometry or electrode registration, and may 
introduce artifacts such as spurious lines of block [2-3]. 

To overcome these limitations, data-driven approaches 
have recently been proposed. By directly learning the BSP-
EGM mapping, they avoid explicit dependence on forward 
models and may be more robust to anatomical variability. 
Neural networks, hybrid physics-informed methods, and 
nonparametric regressions have shown promising results 
[4-6]. In particular, we previously introduced a regression 
framework based on Multivariate Adaptive Regression 

Splines (MARS), trained within a single subject (M1). This 
subject-specific model improved EGM and AT fidelity 
compared to Tikhonov [7], but required subject-specific 
training data, limiting clinical translation. 

Achieving cross-subject generalization is a critical step 
for ECGI. A generalized model could reduce the need for 
patient-specific imaging, improve robustness to inter-
individual variability, and allow pooling of heterogeneous 
datasets. Recent studies in ECGI have highlighted the 
potential of cross-subject training, provided that signals are 
standardized across geometries [8]. Standardization 
strategies such as cylindrical unwrapping of BSP and 
bullseye projection of EGMs enable alignment between 
subjects while preserving spatial topology. 

In this study, we extend the MARS framework to a 
generalized setting (M2) using a leave-one-subject-out 
protocol on in-vivo pig data. We hypothesize that this 
approach, combined with standardized 3D-to-2D 
projections of BSP and EGM signals, can maintain 
reconstruction fidelity comparable to M1 and Tikhonov, 
while enabling a more robust and clinically transferable 
solution. 

 
2. Methods 

.2.1. Data Sets 
 

Experimental data were obtained from anesthetized, 
closed-chest, pigs (n=4, 30-40 kg). Epicardial and torso 
potentials were recorded simultaneously using an elastic 
"sock" (239 unipolar electrodes, Auckland Uniservices 
Ltd, New Zealand) and flexible strips attached to the body 
surface (184 electrodes, BioSemi, the Netherlands). For 
each pig, recordings were made during sinus rhythm, and 
pacing left and right endo- , and epicardium sites with the 
number of pacing locations varying between 5 and 21 
depending on the animal. Overall, 70 records were 
obtained. Upon completion, the heart was arrested and 
MRI performed. The heart was excised and perfusion-
fixed. Epicardial electrode locations were captured with a 
multi-axis digitizing arm (FARO Technologies, FL). MRI 

Computing in Cardiology 2025; Vol 52 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2025.367



contrast markers placed on the “sock” and body surface 
strips were used to registration. 

 
2.2. Inverse Problem Formulation 

    In this work, we utilized EPs (i.e., electrograms (EGM)) 
as the bioelectric source model. The relationship between 
EPs and BSPs is described by a linear equation: 
 

𝑦(𝑡) = 𝐴𝑥(𝑡) + 𝑛(𝑡) 
 
Here, 𝑥(𝑡) 	∈ 	ℝ!×# and 𝑦(𝑡) ∈ 	ℝ$×# are the EPs and 
BSPs vectors at time t, where M , N and T are the number 
of ECG electrodes, epicardial nodes and number of time 
samples, respectively. 𝐴	 ∈ 	ℝ$×! is the forward operator, 
and 𝑛(𝑡) ∈ 	ℝ$×# represents the measurement noise. The 
forward matrix 𝐴 was calculated by solving the forward 
ECG problem using the boundary element method. For the 
inverse problem, zero-order Tikhonov regularization was 
employed as a benchmark for comparison with the MARS 
method. The regularization parameter was computed using 
the L-curve method 
 
2.3.  Multivariate Adaptive Regression 
Splines (MARS) 

MARS method is a non-parametric regression 
technique designed to model complex relationships 
between a dependent variable and multiple predictors. It 
achieves this by using spline functions to divide the data 
into different regions and fit local models in each interval. 
The central idea of MARS is to construct the model 
through a series of basis functions formed around knots, 
which act as breakpoints in the predictor space. These basis 
functions are defined as pairs of reflected splines and can 
capture both non-linearities and interactions between 
variables. This part already have been explain in [6-7] . 

Several MARS libraries are available. We implemented 
our methods with the help of “Earth: Multivariate Adaptive 
Regression Splines R package” and its standalone C 
version, which can be used in MATLAB.  

 
.2.4. Geometric Standardization and 
Interpolation 

A major challenge for cross-subject training in ECGI 
lies in the inter-individual variability of electrode 
configurations and cardiac-torso geometries. Directly 
pooling BSP and epicardial data across subjects without 
alignment would introduce inconsistencies in spatial 
correspondence, preventing the regression model from 
learning transferable mappings. To overcome this, we 
applied a spatial standardization procedure to project all 
subject-specific measurements into a common 2D 
reference domain. 

To enable cross-subject training, torso electrode 
positions had to be expressed in a common coordinate 
frame, independent of subject-specific geometry. We 
implemented a cylindrical projection and unwrapping 
procedure to convert 3D body surface electrode 
coordinates into a standardized 2D representation. 

First, a cylinder was fitted to the 3D torso surface using 
principal component analysis to determine its central axis 
and least-squares estimation to compute its center and 
radius (figure 1). This fitted cylinder provided a 
geometrical reference aligned with the longitudinal axis of 
the torso. 

The cylinder and the projected electrodes were then 
rotated and translated so that their main axis aligned with 
the global Z-axis and their origin coincided with the 
manually defined cardiac apex. The rotation matrix was 
computed using the axis–angle formulation, aligning the 
PCA-derived vector V with the vertical unit vector [0 0 1]. 

 
Figure 1: Cylindrical fitting and alignment of body surface 
electrodes. (A) Experimental torso electrode layout (Red 
dots) on the pig model. (B) Cylinder fitted to the torso 
surface, then aligned with the global Z-axis and positioned 
with its origin at the manually defined cardiac apex. 

Next, each 3D electrode position was converted into 
cylindrical coordinates (θ,ρ,z), where the angular 
component θ represents the circumferential position 
around the torso and z the vertical coordinate along the 
heart-torso axis.  

 

 
Figure 2: Cylindrical unwrapping and angular correction. 
(A) Initial 2D projection. (B) Electrodes recentred with the 
spine as angular origin. White dots:electrode ; the blue line: 
sternum; red dot: initial spine position; red line: corrected 
spine position. 

Finally, electrodes were unwrapped into a 2D map 
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defined by [θ,z] coordinates and recentered so that the 
spine corresponded to the angular origin (θ=0), ensuring 
consistent orientation across subjects (figure 2).  

For EGMs, epicardial electrode positions were 
projected onto a standardized 2D bullseye representation, 
following an adapted UNISYS approach [8–9]. To 
preserve spatial topology during flattening, the 3D 
ventricular surface was first mapped onto a virtual cone 
whose apex was positioned along the ventricular axis. This 
intermediate conical projection maintains relative geodesic 
distances between neighboring electrodes before unfolding 
the surface into the 2D bullseye map. 

After projection of BSP and EGM electrodes into their 
respective 2D standardized domains, the signals were 
interpolated onto a uniform grid using ordinary kriging 
(figure 3).  

 
Figure 3: Standardization of electrode positions for cross-
subject training. (A) BSP projected to a 2D cylindrical 
map. (B) EGM projected to a 2D bullseye map. Red: 
original positions; black: after standardization. 

This method was chosen to preserve spatial smoothness 
and to generate regularly sampled potential maps 
consistent across subjects. 

In ordinary kriging, each unknown potential value ẑ(u) 
at a grid node u is estimated as a weighted sum of the 
measured electrode signals  z(𝑠%): 

 
	ẑ(u) =1𝑤%(𝑢)z(𝑠%),

%

 

 
where the weights 𝑤%(u) depend on the spatial distance 

between electrodes and satisfy the unbiasedness constraint 
∑ 𝑤% = 1% . 

Pairwise Euclidean distances were computed between 
all known electrode positions and between known and 
target grid points in the 2D domain. These distances were 
used to form the kriging system, where the covariance 
between points decreases with distance. Solving this 
system yields a geometry-specific weight matrix W that 
can be reused for all time samples and beats Ẑ = 𝑊𝑍 with 
Z being the matrix of electrode signals. 

 
.2.5.  Data Training 

Five beats per pacing site were used for training to 
balance accuracy and computational efficiency [1]. 

Two training configurations were tested. In the subject-
specific model (M1), training and testing were performed 
within the same animal using a leave-one-pacing-site-out 
protocol. In the generalized model (M2), a leave-one-pig-
out strategy was applied, training on three animals and 
testing on the remaining one. 

Training was restricted to the QRS complex of each beat 
to focus on ventricular activation and avoid interference 
from baseline or repolarization components. All BSP and 
EGM signals were normalized beat by beat to zero mean 
and unit variance prior to model fitting. The MARS 
implementation (earth package, version 5.3.3) 
automatically selected the most relevant basis functions 
through internal cross-validation. 

 
.2.6.  Data Analysis 

Data analysis was performed on all beats for each 
record. Correspondence between measured and 
reconstructed electrograms (EGMs) was quantified using 
the Pearson’s correlation coefficient (CC).  
The significance of differences among the means of the 
inverse methods were examined using Friedman test. 
 
3. Results 

Preliminary observations suggest that the generalized 
MARS model (M2) may offer consistent performance 
across subjects (figure 4).  

 
Figure 4: Comparison of electrogram reconstruction 
accuracy across methods. (A) Pig with limited training data 
for M1. (B) Pig with extensive training data. **** p < 
0.0001. 

In the case where the subject-specific model (M1) 
performed poorly due to limited training data (Pig 2), M2 
achieved higher accuracy than M1 (median CC = 0.52 
[0.48–0.56] vs 0.34 [0.25–0.42], p < 0.0001), although it 
remained significantly lower than Tikhonov (0.62 [0.59–
0.67], p < 0.0001). Conversely, for the animal with a richer 
pacing dataset (Pig 3), M1 reached the best reconstruction 
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accuracy (0.84 [0.77–0.89]), while M2 was slightly lower 
(0.64 [0.60–0.67]) and comparable to Tikhonov (0.66 
[0.62–0.70]). 

 
4. Discussion 

These results represent preliminary but encouraging 
evidence that a data-driven regression framework such as 
MARS can generalize across subjects in ECGI. While the 
present study included a limited number of animals, the 
consistent behavior of the generalized model (M2) across 
different datasets suggests that data diversity, rather than 
subject-specific optimization, can drive stable 
reconstruction performance. 

Several improvements could further enhance model 
robustness and generalization. In particular, the spatial 
standardization step could be refined. In the current 
implementation, epicardial and BSP potentials were 
interpolated in the 2D standardized domain, implicitly 
assuming that electrode distances are preserved after 
projection. This is not strictly true, and geometric 
distortions may affect local spatial relationships between 
electrodes. A more accurate approach would be to perform 
the interpolation in 3D prior to 3D-to-2D transformation, 
preserving geodesic distances and minimizing spatial 
distortion before model training. 

Future work will focus on optimizing the spatial 
standardization procedure, particularly by improving the 
3D-to-2D transformation and interpolation steps. This will 
also include estimating the remaining animals using the 
generalized framework and potentially augmenting the 
training set with simulated data to enhance model 
robustness and variability coverage. 

 
5. Conclusion 

This study introduces a generalized, cross-subject 
version of the MARS-based ECGI framework. Preliminary 
results demonstrate that the model can reconstruct 
epicardial electrograms with accuracy comparable to 
subject-specific training and, in data-limited cases, 
superior performance. These findings highlight the 
potential of data-driven approaches for developing 
geometry-independent, patient-agnostic ECGI methods. 
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