Cross-Subject Prediction in ECGI using a MARS-Based Regression Framework

Amaél Mombereau!, Nicolas Montagne', Ayoub El Ghebouli!, Yesim Serinagaoglu®>* & Laura Bear!”

"Université de Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France
2Department of Electrical and Electronics Engineering, Middle East Technical University,
Ankara, Turkey
*These authors contributed equally as last authors

Abstract

Noninvasive electrocardiographic imaging (ECGI)
reconstructs epicardial electrical activity from body
surface potentials (BSP). In previous work, we
demonstrated that a regression framework based on
Multivariate Adaptive Regression Splines (MARS) trained
within a subject achieved higher fidelity than Tikhonov
regularization. In this study, we extend this framework to
assess cross-subject generalization. A leave-one-pig-out
protocol was applied on in-vivo data from four
anesthetized pigs with torso and epicardial recordings
(184 BSP and 239 EGM electrodes). To enable cross-
subject training, BSP and EGM were standardized to 2D
electrode maps. Results showed that the generalized MARS
model maintained accuracy close to subject-specific
training, and in some cases outperformed it when training
data within the test subject were limited. These findings
highlight the potential of data-driven ECGI frameworks to
move beyond subject-specific models and towards
clinically transferable solutions.

1. Introduction

Electrocardiographic imaging (ECGI) aims to
reconstruct epicardial electrical activity from noninvasive
body surface potentials (BSP). The classical formulation is
an ill-posed inverse problem, typically solved with
Tikhonov regularization [1]. Although stabilizing the
solution, such approaches tend to oversmooth electrograms
and activation time (AT) maps, are highly sensitive to
errors in geometry or electrode registration, and may
introduce artifacts such as spurious lines of block [2-3].

To overcome these limitations, data-driven approaches
have recently been proposed. By directly learning the BSP-
EGM mapping, they avoid explicit dependence on forward
models and may be more robust to anatomical variability.
Neural networks, hybrid physics-informed methods, and
nonparametric regressions have shown promising results
[4-6]. In particular, we previously introduced a regression
framework based on Multivariate Adaptive Regression
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Splines (MARS), trained within a single subject (M1). This
subject-specific model improved EGM and AT fidelity
compared to Tikhonov [7], but required subject-specific
training data, limiting clinical translation.

Achieving cross-subject generalization is a critical step
for ECGI. A generalized model could reduce the need for
patient-specific imaging, improve robustness to inter-
individual variability, and allow pooling of heterogeneous
datasets. Recent studies in ECGI have highlighted the
potential of cross-subject training, provided that signals are
standardized across geometries [8]. Standardization
strategies such as cylindrical unwrapping of BSP and
bullseye projection of EGMs enable alignment between
subjects while preserving spatial topology.

In this study, we extend the MARS framework to a
generalized setting (M2) using a leave-one-subject-out
protocol on in-vivo pig data. We hypothesize that this
approach, combined with standardized 3D-to-2D
projections of BSP and EGM signals, can maintain
reconstruction fidelity comparable to M1 and Tikhonov,
while enabling a more robust and clinically transferable
solution.

2. Methods

2.1. Data Sets

Experimental data were obtained from anesthetized,
closed-chest, pigs (n=4, 30-40 kg). Epicardial and torso
potentials were recorded simultaneously using an elastic
"sock" (239 unipolar electrodes, Auckland Uniservices
Ltd, New Zealand) and flexible strips attached to the body
surface (184 electrodes, BioSemi, the Netherlands). For
each pig, recordings were made during sinus rhythm, and
pacing left and right endo- , and epicardium sites with the
number of pacing locations varying between 5 and 21
depending on the animal. Overall, 70 records were
obtained. Upon completion, the heart was arrested and
MRI performed. The heart was excised and perfusion-
fixed. Epicardial electrode locations were captured with a
multi-axis digitizing arm (FARO Technologies, FL). MRI
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contrast markers placed on the “sock” and body surface
strips were used to registration.

2.2. Inverse Problem Formulation

In this work, we utilized EPs (i.e., electrograms (EGM))
as the bioelectric source model. The relationship between
EPs and BSPs is described by a linear equation:

y() = Ax(t) +n(t)

Here, x(t) € RV*T and y(t) € RM*T are the EPs and
BSPs vectors at time t, where M , N and T are the number
of ECG electrodes, epicardial nodes and number of time
samples, respectively. A € RM*¥ is the forward operator,
and n(t) € RM*T represents the measurement noise. The
forward matrix A was calculated by solving the forward
ECG problem using the boundary element method. For the
inverse problem, zero-order Tikhonov regularization was
employed as a benchmark for comparison with the MARS
method. The regularization parameter was computed using
the L-curve method

2.3.  Multivariate
Splines (MARS)

Adaptive Regression

MARS method is a non-parametric regression
technique designed to model complex relationships
between a dependent variable and multiple predictors. It
achieves this by using spline functions to divide the data
into different regions and fit local models in each interval.
The central idea of MARS is to construct the model
through a series of basis functions formed around knots,
which act as breakpoints in the predictor space. These basis
functions are defined as pairs of reflected splines and can
capture both non-linearities and interactions between
variables. This part already have been explain in [6-7] .

Several MARS libraries are available. We implemented
our methods with the help of “Earth: Multivariate Adaptive
Regression Splines R package” and its standalone C
version, which can be used in MATLAB.

2.4. Geometric Standardization and

Interpolation

A major challenge for cross-subject training in ECGI
lies in the inter-individual variability of -electrode
configurations and cardiac-torso geometries. Directly
pooling BSP and epicardial data across subjects without
alignment would introduce inconsistencies in spatial
correspondence, preventing the regression model from
learning transferable mappings. To overcome this, we
applied a spatial standardization procedure to project all
subject-specific measurements into a common 2D
reference domain.

To enable cross-subject training, torso electrode
positions had to be expressed in a common coordinate
frame, independent of subject-specific geometry. We
implemented a cylindrical projection and unwrapping
procedure to convert 3D body surface -electrode
coordinates into a standardized 2D representation.

First, a cylinder was fitted to the 3D torso surface using
principal component analysis to determine its central axis
and least-squares estimation to compute its center and
radius (figure 1). This fitted cylinder provided a
geometrical reference aligned with the longitudinal axis of
the torso.

The cylinder and the projected electrodes were then
rotated and translated so that their main axis aligned with
the global Z-axis and their origin coincided with the
manually defined cardiac apex. The rotation matrix was
computed using the axis—angle formulation, aligning the
PCA-derived vector V with the vertical unit vector [0 0 1].
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Figure 1: Cylindrical fitting and alignment of body surface
electrodes. (A) Experimental torso electrode layout (Red
dots) on the pig model. (B) Cylinder fitted to the torso
surface, then aligned with the global Z-axis and positioned
with its origin at the manually defined cardiac apex.

Next, each 3D electrode position was converted into
cylindrical coordinates (60,p,z), where the angular
component 0 represents the circumferential position
around the torso and z the vertical coordinate along the
heart-torso axis.
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Figure 2: Cylindrical unwrapping and angular correction.
(A) Initial 2D projection. (B) Electrodes recentred with the
spine as angular origin. White dots:electrode ; the blue line:
sternum; red dot: initial spine position; red line: corrected
spine position.

Finally, electrodes were unwrapped into a 2D map
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defined by [60,z] coordinates and recentered so that the
spine corresponded to the angular origin (6=0), ensuring
consistent orientation across subjects (figure 2).

For EGMs, epicardial electrode positions were
projected onto a standardized 2D bullseye representation,
following an adapted UNISYS approach [8-9]. To
preserve spatial topology during flattening, the 3D
ventricular surface was first mapped onto a virtual cone
whose apex was positioned along the ventricular axis. This
intermediate conical projection maintains relative geodesic
distances between neighboring electrodes before unfolding
the surface into the 2D bullseye map.

After projection of BSP and EGM electrodes into their
respective 2D standardized domains, the signals were
interpolated onto a uniform grid using ordinary kriging
(figure 3).
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Figure 3: Standardization of electrode positions for cross-
subject training. (A) BSP projected to a 2D cylindrical
map. (B) EGM projected to a 2D bullseye map. Red:
original positions; black: after standardization.

This method was chosen to preserve spatial smoothness
and to generate regularly sampled potential maps
consistent across subjects.

In ordinary kriging, each unknown potential value Z(u)
at a grid node u is estimated as a weighted sum of the
measured electrode signals z(s;):

20) = ) wiwr(s),

where the weights w;(u) depend on the spatial distance
between electrodes and satisfy the unbiasedness constraint
aiw; =1

Pairwise Euclidean distances were computed between
all known electrode positions and between known and
target grid points in the 2D domain. These distances were
used to form the kriging system, where the covariance
between points decreases with distance. Solving this
system yields a geometry-specific weight matrix W that
can be reused for all time samples and beats Z = WZ with
Z being the matrix of electrode signals.

2.5. Data Training

Five beats per pacing site were used for training to
balance accuracy and computational efficiency [1].

Two training configurations were tested. In the subject-
specific model (M1), training and testing were performed
within the same animal using a leave-one-pacing-site-out
protocol. In the generalized model (M2), a leave-one-pig-
out strategy was applied, training on three animals and
testing on the remaining one.

Training was restricted to the QRS complex of each beat
to focus on ventricular activation and avoid interference
from baseline or repolarization components. All BSP and
EGM signals were normalized beat by beat to zero mean
and unit variance prior to model fitting. The MARS
implementation  (earth  package, version 5.3.3)
automatically selected the most relevant basis functions
through internal cross-validation.

2.6. Data Analysis

Data analysis was performed on all beats for each
record. Correspondence between measured and
reconstructed electrograms (EGMs) was quantified using
the Pearson’s correlation coefficient (CC).

The significance of differences among the means of the
inverse methods were examined using Friedman test.

3. Results

Preliminary observations suggest that the generalized
MARS model (M2) may offer consistent performance
across subjects (figure 4).
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Figure 4: Comparison of electrogram reconstruction
accuracy across methods. (A) Pig with limited training data
for M1. (B) Pig with extensive training data. **** p <
0.0001.

In the case where the subject-specific model (M)
performed poorly due to limited training data (Pig 2), M2
achieved higher accuracy than M1 (median CC = 0.52
[0.48-0.56] vs 0.34 [0.25-0.42], p < 0.0001), although it
remained significantly lower than Tikhonov (0.62 [0.59—
0.67], p<0.0001). Conversely, for the animal with a richer
pacing dataset (Pig 3), M1 reached the best reconstruction
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accuracy (0.84 [0.77-0.89]), while M2 was slightly lower
(0.64 [0.60-0.67]) and comparable to Tikhonov (0.66
[0.62-0.70]).

4. Discussion

These results represent preliminary but encouraging
evidence that a data-driven regression framework such as
MARS can generalize across subjects in ECGI. While the
present study included a limited number of animals, the
consistent behavior of the generalized model (M2) across
different datasets suggests that data diversity, rather than
subject-specific  optimization, can drive stable
reconstruction performance.

Several improvements could further enhance model
robustness and generalization. In particular, the spatial
standardization step could be refined. In the current
implementation, epicardial and BSP potentials were
interpolated in the 2D standardized domain, implicitly
assuming that electrode distances are preserved after
projection. This is not strictly true, and geometric
distortions may affect local spatial relationships between
electrodes. A more accurate approach would be to perform
the interpolation in 3D prior to 3D-to-2D transformation,
preserving geodesic distances and minimizing spatial
distortion before model training.

Future work will focus on optimizing the spatial
standardization procedure, particularly by improving the
3D-to-2D transformation and interpolation steps. This will
also include estimating the remaining animals using the
generalized framework and potentially augmenting the
training set with simulated data to enhance model

robustness and variability coverage.

5. Conclusion

This study introduces a generalized, cross-subject
version of the MARS-based ECGI framework. Preliminary
results demonstrate that the model can reconstruct
epicardial electrograms with accuracy comparable to
subject-specific training and, in data-limited cases,
superior performance. These findings highlight the
potential of data-driven approaches for developing
geometry-independent, patient-agnostic ECGI methods.

Acknowledgments

This research was financially supported by the National
Research Agency (ANR-10-IAHU-04) and (ANR-22-
CE17-0023), and the PHC BOSPHORE “INVERSE” grant
(47978NM), and Scientific and Technological Research
Council of Tiirkiye (TUBITAK-221N175).

References

[1] A. N. Tikhonov and V. Y. Arsenin, Solutions of ill-
posed problems. Washington, D.C.: John Wiley &
Sons, New York: V. H. Winston & Sons, 1977.

[2] M. J. M. Cluitmans et al., « In Vivo Validation of
Electrocardiographic ~ Imaging», JACC  Clin.
Electrophysiol., vol. 3, n° 3, p. 232-242, mars 2017,
doi: 10.1016/j.jacep.2016.11.012.

[31 L. R. Bear et al, «Forward Problem of
Electrocardiography: Is It Solved? », Circ. Arrhythm.
Electrophysiol., vol. 8, n° 3, p. 677-684, june 2015,
doi: 10.1161/CIRCEP.114.001573.

[4] K.-W. Chen, L. Bear, and C.-W. Lin, « Solving
Inverse  Electrocardiographic ~ Mapping  Using
Machine Learning and Deep Learning Frameworks »,
Sensors, vol. 22, n° 6, p. 2331, mars 2022, doi:
10.3390/522062331.

[5] X. Meng, Z. Li, D. Zhang, and G. E. Karniadakis,
« PPINN: Parareal Physics-Informed Neural Network
for Time-Dependent PDEs », Comput. Methods Appl!.
Mech. Eng., vol. 370, p. 113250, oct. 2020, doi:
10.1016/j.cma.2020.113250.

[6] O.Onak, T. Erenler, and Y. Serinagaoglu, « A Novel
Data-Adaptive Regression Framework Based on
Multivariate Adaptive Regression Splines for
Electrocardiographic  Imaging », I[EEE  Trans.
Biomed. Eng., vol. 69, n° 2, p. 963-974, fevr. 2022,
doi: 10.1109/TBME.2021.3110767.

[71 A. Mombereau, Y. Serinagaoglu Dogrusoz, R.
Dubois, and L. R. Bear, « Improved Performance of
Data-Adaptive Regression Framework Based on
Multivariate Adaptive Regression Splines for
Electrocardiographic Imaging », presented at 2024
Computing in Cardiology Conference, déc. 2024. doi:
10.22489/CinC.2024.294.

[8] J. Stoks, U. Chau Nguyen, R. Peeters, P. Volders, and
M. Cluitmans, « An Open-Source Algorithm for
Standardized Bullseye Visualization of High-
Resolution Cardiac Ventricular Data: UNISYS »,
presented at 2020 Computing in Cardiology
Conference, déc. 2020. doi:
10.22489/CinC.2020.160.

[9] N.Montagne, A. Mombereau, O. Bernus, and L. R.
Bear, «Estimating Septum Rotation to Improve
Accuracy of Cardiac Biventricular Bullseye
Representation Using the UNISYS Algorithmy,
Computing in Cardiology, accepted for publication,
2025. Available:
https://cinc.org/2025/Program/accepted/348.html

Address for correspondence:

Amaél Mombereau
Av. du Haut Lévéque, 33600 Pessac
Amael. mombereau@ihu-liryc.fr

Page 4


https://cinc.org/2025/Program/accepted/348.html?utm_source=chatgpt.com
https://www.google.com/maps/place/data=!4m2!3m1!1s0xd54d93f4513f20d:0xb2a39837d98bba58?sa=X&ved=1t:8290&ictx=111

